
UNCLASSIFIED

AD 259865

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formlated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



REPORT NO. TDR-594(1990)TN-1

An Introduction to Inertial

IGuidance Concepts for

Ballistic Missiles (A Tutorial Report)

r__ 15 MARCH 1961
LLJ~ __ __

Prepared by DAVID W. WHITCOMBE

m) For AIR FORCE BALLISTIC MISSILE DIVISION

C..> -Inc AIR RESEARCH AND DEVELOPMENT COMMAND

UNITED STATES AIR FORCE, Inglewood, California

/
7

AEROSPACE CORPORATION
CONTRACT NO. AF 04t647)-594

AST1A :,

!$ .'' 19 1 I

A J -L2I 9 tf



Report No.
TDR-594(1990)TN- 1

AN INTRODUCTION TO INERTIAL GUIDANCE

CONCEPTS FOR BALLISTIC MISSILES

(A TUTORIAL REPORT)

by

David W. Whitcombe

AEROSPACE CORPORATION
El Segundo, California

Contract AF 04(647)-594

15 March 1961

Prepared for

AIR FORCE BALLISTIC MISSILE DIVISION
AIR RESEARCH AND DEVELOPMENT COMMAND

UNITED STATES AIR FORCE
Inglewood, California



ABSTRACT

Various aspects of guidance and control for ballistic

missiles are presented. Adiscussionof the required

velocity vector is given with several examples based

upon the flat earthmodel. Error analysis procedures

involving inertial reference and measurement sys-

tems are treated in some detail..

Missile steering techniques are approached in such a

way that stability is not a problem. Procedures for

insuring that the missile velocity will be controlled to

the required velocity without payload loss penalties

are given. This is accomplished by introducing tra-

jectory-shaping functions that cause the guided bal-

listic missile to closely follow the nominal reference

trajectory.

The steering discussion initially assumes a point mass

missile. Control syatem, comptlications that result

from actual missile dynamics are treated separately.
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I. GENERAL DISCUSSION

The purpose of a ballistic missile guidance system is to .pbtain engine

steering and shutoff information by operating on measured data. These

systems are basically of two types, radio and inertial. A summary descrip-

tion of each is given below.

Radio guidance makes position and/or velocity measurements from

ground-based radar. These measurements are input to a ground-based

computer where guidance commands are computed. These commands are

sent to the missile control system via a radio link. A radio guidance sys-

tem requires missile visibility from the tracking radar site. In some

cases a downrange station must be provided to insure this visibility. A

constraint on the missile attitude may also be imposed because the beacon

antenna is attached to the missile. The accuracy of the all-electronic

radio guidance systems, especially those with long base lines, is generally

better than may be obtained with inertial guidance systems (IGS's).

An all-inertial guidance system for ballistic missiles makes accelera-

tion measurements in a gyro-stabilized platform coordinate system. *

These measurements are input to an airborne computer where guidance

commands are computed and relayed to the control system. The control

system used with an IGS may be simplified in that the conventional gyro

attitude reference normally used with radio guidance may be replaced by

the inertial platform. The electromechanical sensors used in inertial

guidance systems are subject to error. The precision gyi-os, used in the

platform, drift over long periods of time resulting in significant coordinate

system errors. The bias and scale factor errors in the accelerometer

result in position and velocity errors in the navigation loop. The above

IGS errors are offset by the flexibility offered by a self-contained non-

radiating system. Present day IGS accuracy is satisfactory for most

Guidance principles that are directly related to strapped-down IG systems
will not be discussed in this report.
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space applications in the earth's gravitational field; this system may also

be used for ballistic missile launch guidance to lunar impact. For more

complicated missions, lasting many days or months, an IGS may be aided

with a star and/or planet tracker. Radio guidance may also be used as an

inertial aid, especially when target acquisition greatly simplifies the guid-

ance task.

The principal differences between radio and all-inertial systems then

involve the form of the original measurements. With either system suf-

ficient data must be measured to allow the calculation of position and

velocity vectors, R and R, of the missile in some suitable coordinate

system. A velocity deviation measured from the desired missile velocity

may be obtained. The thrust acceleration, aT, may then be steered in

direction so as to drive the yaw and pitch components of the velocity

deviation to zero. When the axial (or roll) error velocity component is

reduced to zero, engine thrust is terminated. The missile will then

coast to its target under the influence of mass attraction forces exerted

by the earth, sun, other planets, etc.

Note that it is assumed here that the thrust acceleration, aT, can

only be steered in direction and not controlled in magnitude. This lack of

control does not impose a serious restraint because the magnitude of aT

is designed to be reproducible within tolerances of a few percent.

This memo will be concerned with all-inertial guidance systems used

for ballistic missile guidance. The duration of powered flight in a ballistic

trajectory is usually several minutes, during which accelerations may

reach 15 j's. All guidance equipment on board the missile must operate

with a high degree of reliability in this environment.

The following sections of this memo will discuss inertial coordinate

systems, measurement errors, the navigation loop, guidance computations,

and ballistic missile steering.



II. INERTIAL COORDINATE SYSTEMS

A coordinate system (CS) will be specified in this section in terms of

three mutually orthogonal inertial dire'ctions. These directions are indi-

cated by three unit vectors, which are termed basis vectors. Each

coordinate system is then defined by specifying the directions of the three

basis vectors. Four coordinate systems will be discussed. The orienta-

tion of the three basis vectors will in each case be apparent. In no case

will the transformation from one CS to another be written out as a set of

equations. The orientation of the basis vectors is always assumed known,

and these transformations can generally be written by inspection in terms

of the geometry of the system.

The inertial measurement unit consists of three accelerometers

mounted on a gyro-stabilized platform. In this memo, it will be assumed

that the reference platform Will maintain a fixed orientation with respect

to inertial space. Platform hardware such as gimbals, the porro pirism,

etc. , must be used to specify three orthogonal platform directions. These

directions define the platform coordinate system. Initial platform CS

alignment is accomplished with respect to an external CS. The three in-

put axes of the platform stabilizing gyros define a second coordinate sys-

tem. This CS must be defined in order to perform platform drift error

analyses. It will be shown in the next section that the orientation of each

gyro must be specified. The three accelerometers are fixed rigidly to

the inertial platform. The directions of the three accelerometers define

the accelerometer coordinate system. This is an important CS because

it is the one in which the measurements of sensed acceleration, aT) are

made.

A fourth coordinate system is of interest. This will be referred to

as the computing coordinate system, and is the one used for guidance cal-

culations. This CS may be an earth-centered inertial CS in which the

expression for gravity may be easily calculated. Other coordinate systems

have other desirable properties. The four coordinate systems.above mayall

be equivalent or they may all be different depending onactual hardware and

-3-



guidance mechanizations. In any case, the transformations from any one

CS to any other CS will be known. Hence, for purposes of this memo, it

may be assumed that the accelerometer coordinate system and the com-

puting coordinate system are identical.

The computing CS will be specified in terms of the three mutually

orthogonal unit vectors i , j , and k . The missile position and velocity

may be written in terms of this set of inertial basis vectors as

R = Xi+Y j + Zk

R = xi+yj + j k

where X , Y, Z and k, 1, k are the components of missile position and

velocity respectively. The computing coordinate system inertial basis

vectors i, j, k may be used to evaluate the components of any vector

used in the following section. For example,

X =R'i

Y = R j

Z =R' k

-4-



IIL INERTIAL GUIDANCE MEASUREMENT ERRORS

Inertial. guidance measurement errors affect both the magnitude and

direction of the sensed acceleration. These error sources are conven-

iently classed as follows:

a) Accelerometer bias, scale factor, and second-degree errors;

b) Accelerometer and platform misalignments;

c) Fixed and acceleration-dependent gyro drift rates.

Errors in Class (a) affect the magnitude of the sensed acceleration,

while Class (b) and (c) errors affect the direction.

Detailed discussions of inertial guidai.-e error analysis techniques

are given in References (1) and (2). A summary description is given

below.

Sensed Acceleration Magnitude Errors:

All accelerometers contain some moving parts. When acceleration

is sensed, forces within the instrument cause an internal displacement

that is proportional to the acceleration. When the device is used during

ballistic coast periods, no such forces act on the internal.parts of the

instrument. There are no internal displacements in a zero-F field when

changes in g within the instrument are neglected. Hence, the reading of

an ideal accelerometer is

. .. .

aT = R - g (3.1)

where

R = acceleration of the missile with respect to inertial space

g = acceleration of gravity

aT = the sum of all external accelerations acting on the missile

except g

-5-



Let aTx and a' denote the ideal and actual readings of the i
Tx Tx

accelerometer. The accelerometer error AaTx is then

ax= a' -a
Tx x aTx

Accelerometer measurement errors result from bias, cross acceleration,

and nonlinearity errors. A general expression for accelerometer error

is given as

AaTx =k 0 + kl aTx +kaT +k 3 aTz +kll aTx2 + klZaTxaTy +

(3.2)

where

k = bias coefficient
0

k 1 = scale factor coefficient

k2 ;k3 = cross axis coefficients

k 1 = second-degree error coefficient

k 12 etc. = additional nonlinearity error coefficients

aTxsaTy, aTz = components of sensed acceleration

Expressions similar to equation (3. 2) are used for the j and k accelero-

meters. The relative magnitude of the error coefficients in equation

(3. Z) depends on the particular accelerometer design. The actual values

are usually obtained from the manufacturer or impartial testing agencies.

Accelerometer and Platform Misalignments:

The accelerometers cannot be mounted on the platform without intro-

ducing some error. Similarly the platform cannot be leveled and aligned

in azimuth without error. As a result, six misalignment angles, two for

each accelerometer, are required to express the misalignment of the

accelerometer package with respect to inertial space.
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Let i, j, k denote the desired orientation of the three accelerometers.
-A. -:k 

-&The actual orientations i', j', and k' are then

= i + 012j + 0 1 3 k

P = j + 0 2 3 k + 02 1 i (3.3)

k ' = k + 031 i + 032j

where the 012, . .. ,032 denote the small misalignmet angles. For

example, 0Z3 is the misalignment of the j accelerometer in the k

direction. The misalignment angles may be specified in several ways.

For example, three angles may be used to specify the platform level and

azimuth alignment. These angles are equivalent to 013' 023, and 012 .

The i accelerometer may then be mounted on the platform with zero

er-ror assumed. The J accelerometer is then mounted on the platform

with respect to i; the error is 0Zl' The k accelerometer is then

mounted with errors 031 and 032" Again, let aT., aTy ,and aTz

denote the ideal accelerometer measurements. The actual measurements

a'x, aTy, a~z, are obtained from equation (3.3) as

T a aT Ty + 013 aTz

ay = aTy + 023aTz + 02 laTx (3.4)

z z + 0 3 aTx + 9 3Z aT

The last two terms in each of equations (3.4) are error terms. These

are easily calculated using standard missile simulation programs.

Platform Drift Error:

Coordinate system errors result from drifts in the platform stabi-

ilizing gyros. In addition to the steady drift rate of the gyro, acceleration-

dependent drift rates may exist. These latter drift rates are referred to

as mass unbalance and anisoelastic drift rates. The following discussion

is included to aid in understanding the nature of IGS platform drift.
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A platform uses three single-degree-of-freedom gyros or two two-

degree-of-freedom gyros. The three orthogonal axes of a single-degree-

of-freedom gyro are shown in Figure 3. 1.

Sn (spin axis)

nO(output axis)

I n (input axis)

Figure 3. 1 - Axes of a SDF Gyro

In Figure 3. 1, the subscript n = 1, 2,or 3 is added to S, I, and 0

to indicate the spin, input, or output axis of the nth platform gyro. A

platform SDF rate integrating gyro is designed to measure only angular

rates about the input axis. An angle pickoff on the output axis measures

the input angular rate. Angular rates about the output axis do not cause

a pickoff indication because the viscous fluid damping constrains the case

motion to follow the inner gimbal motion.

A conventional two-degree-of-freedom gyro differs from a SDF gyro

in that an additional gimbal and pickoff are added. As such, the 2-DF gyro

-8-
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may be considered equivalent in performance to two SDF gyros. When two

Z-DF gyros are used to stabilize the platform a redundant control direction

is provided. This redundant direction will be ignored in this analysis. The

subscript n will be used to denote any one of three orthogonal input axes

that are used.

A 2-DF gyro does not require the viscous damping restraint. In fact, the

flotation fluid has negligible damping. The additional gimbal and pickoff

is provided so that angular displacements about both input axes may be meas-

ured. The directions of these axes are shown in Figure 3. 2, Note that

each input axis is also an output axis.

.. % --

01z l 12

I 1 - 0-a Z-

Figure 3.2 - Axes for a 2-DF Gyro

The angular momentum of the gyro spin rotor is large compared to

the gimbal momenta and certain other dynamical terms discussed in

- 9 - -.
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References (3) and (4). Hence, the law of the gyro is approximated as

.% -. % .-

T = w AH (3.5)n n n

where

Hn = vector angular momentum of the gyro wheel

T = residual unbalance torques within the gyron

The symbol A is used to denote the vector cross product.

Both SDF and 2-DF gyros drift as a result of unbalance torques acting

about the output axis. When both sides of equation (3. 5) are multiplied by
0 n (scalar product) the result is

n0T n 0 n (in/H n n

H w (S AO
n n nn

= -H W In n n -

Hence, the platform drift rates about the three input axes, Cn , may be
*

written as

n H T 0 n (3.6)
n

Fixed, i. e., constant or steady, gyro drift rates are usually denoted

by R. These drift rates result from fixed residual torques, T o , within

the gyro such as bearing frictions and pickoff reactions. Then the fixedth
drift rate of the n platform gyro is

R I- T • O 3.7)n H on nn

The presentation in this section is based on original work by T. W. Layton
and H. Cohen.
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t1'
A mass unbalance within the nth gyro is approximately equivalent to the

torque

T = m 6 aT  (3.8)Tn n T

wher e

m = internal gyro mass
n

5 = vector displacement of the center of mass of the rotor gimbal

system

aT = sensed acceleration vector

The quantities 6 and aT may be written asn a

.. --. & .. . -% -. . ... .,

aT = (aT n n + (aT n) n +(aT Sn)Sn

6n = (6n 0 n On + (6 n n) In + (6n  Sn) S n
th

Hence, the n gyro drift rate resulting from mass unbalance is

-A & -. 1 -A

WU In (aT * S n US (aT * In) (3.9)
n n

whe r e

m _ _

U In= n 5 n .n) (3. 9A)nn

n n

m n
US =H (6n . Sn) (3. 9B)

n n

Anisoelastic gyro drift rate results when the gyro is placed in an

acceleration field. In this environment the gyro will deform. The result-

ing mass shift is obtained as mn En# where

- 2 h - A ..& - &k A. - A -A ..- ..

n (aT O + '(aT . I)I + (a' S)S (3.10)
n On -1n n1-sn Tn')SIn.T

-11 -
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th

The constants KOn Kln, KSn are elastic coefficients of the n plat-

form gyro. The resulting residual torque is

.J, -

Tn = n n AaT (3.11)

Substituting equations (3. 11) and (3. 10) into (3.6) gives

o)A = 2Kn (aT In)( . Sn) (3.12)
An

where
KI -K S

2K n n (3. 1ZA)
n

K = anisoelastic drift rate coefficient
n for the nth platform gyro

The gyro drift rate, wAn, is referred to as the anisoelastic drift rate of
th

the n platform stabilization gyro. The gyro is said to be isoelastic if

KIn = KS . This gyro design goal has not yet been achieved.

The resultant gyro drift rate is denoted by aD' An expression for

TD is obtained by adding the fixed, mass unbalance and anisoelastic drift
th

rates. The result, for the n platform gyro, is

aD = R + UI as  -U I aI + ZK aI a (3.13)n IIInI
n n n n n n

where

aS aT Sn (3.13A)
n

aI = T  I n (3.13B)
n

The above discussion applies to conventional ball-bearing floated plat-

form gyros. Gyros utilizing other designs may have internal acceleration-

dependent torques that are not calculated above.
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There are many ways that three SDF gyros may be oriented on the

platform. One such orientation is given in Table 3. 1, where it is assumed

that the thrust acceleration is always contained in the X-Z plane.

Gyro 1 Gyro 2 Gyro 3

X Direction I1  cos a + sina 0

Y Direction S 1  1 S 3

Z Direction -O 1  -S sin a + 02 cos a 1

Table 3. 1 - An Optimum Gyro Orientation

The following features of Table 3. 1 should be noted:

a) The input axes are orthogonal and define the gyro coordinate

system.

b) The SDF gyros 1 and 3 could be replaced by a single 2-DF gyro.

c) Since aT is in the X-Z plane, there is no anisoelastic drift rate

regardless of the value of the angle a.

d) The platform could be rotated about the j direction through an

angle P without introducing anisoelastic drift rates.

The gyro orientation given in Table 3. 1 successfully eliminates

anisoelastic drift rates, but not mass unbalance drift rates. It is possible

to choose the ngles a and P to minimize these latter drift rates. When

this has been done the gyro orientation is said to be optimized.

-13-
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IV. POSITION AND VELOCITY DETERMINATION

A ballistic missile guidance system does not always require explicit

information as to position and velocity, as in the case of the Q-guidance

method proposed by MIT. The guidance methods to be discussed in this

memo, however, require that the inertial position vector, R , and the

inertial velocity vector, R , be determined. The equation to be solved

is

R (t) g (R) + a (t) (4.1)

where

g = gravitational acceleration

aT = sensed acceleration (measured by the

accelerometers)

R = inertial acceleration

Equation (4. 1) is integrated in the IGS computer. The block diagram

shown in Figure 4. 1 indicates the steps in the solution. The following

notation is

R 0

Figure 4. 1 - Position and Velocity Determination

-14-



used in Figure 4. 1

R = initial position vector of missileo

R = initial velocity vector of missile0

Equatinri (4. 1) is solved in the computing coordinate system. If the

accelerometer coordinate system is not the same CS, a transformation of

aT to the computing CS must be included.

Division and square root operations are slow processes for many

IGS computers. Hence, the direct computation of 9 is a slow process

when - has the form

9 G (4.2)
r

where

R = missile position vector measured from the
center of the earth

In equation (4. Z) the position vector of the missile, R, is expressed

in a coordinate system with origin at the center of the earth. At worst

this requires a simple transformation to the computing CS. The gravity

function may be expanded into a Taylor's series of the form

g = - (R + Ro)F (X, Y, Z) (4.3)

where

F = CO  C CIX + C2Z + C54X + C6Z + C6XZ

A complete description of this expansion is given in Reference (5).
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In equation (4. 3) it is assumed that the nominal thrust acceleration

vector is always contained in the X - Z plane. The above computational

form for * includes oblateness terms while the form given in equation

(4.2) does not. The coefficients, Ci, required by equation (4. 3) are

obtained by Taylor's series expansion about a downrange expansion point.

Other methods for mechanizing the gravity computation exist. For example,

equation (4. 2) may be calculated using difference equations. In some cases,

for a short high-altitude burn it will suffice to use a constant vector for

gravitational acceleration.

Most of the accelerometers currently used in IG systems are integrat-

ing accelerometers. That is, the output of the accelerometer is thrust

velocity, VT, where

"T fTdt

When this is the case the navigation loop shown in Figure 4. 2 may be used.

VT

From integrating
accelerometers

-Gravity Computation g /
g g (R) P

0

R

00

R

Figure 4. 2 -A Possible Navigation Loop When an Integrating.

Accelerometer Is Used.
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The initial position and velocity R 0 and R0 , required in Figures 4. 1

and 4.2 are readily determined when the missile is launched from the

earth. In some space missions a second burning period may be required

after the coast (ballistic free flight) phase. The determination of initial

conditions for this second burn may be made in two ways. Since g is the

only external acceleration acting on the missile during coast, it is only

necessary to integrate & (twice) during the coast period. When this

method is used the accelerometer inputs in Figures 4.1 and 4. 2 are opened

Bo that accelerometer bias errors are not introduced.

The second method requires that the six initial conditions at the start

of the second burn be predicted using first-burnout position and velocity

information. It is also necessary to predict the time of free flight, tff,

in order to provide an engine start command for the second burn. It is

shown in Section V that at first burnout, the missile will satisfy four

guidance restraints at the start-point of the second burn. This start-

point is the "target" for the first burn. When the four guidance restraints

are X = XT, Y = T' Z = ZT, = Z To then three quantities remain

to be determined. These may be predicted using expressions of the follow-

ing form:

X T = XTN + C IAX + C 2AY + CI3AZ + C4 At

YT = YTN + C21&X + C223Y + C24AZ + C24At

tff = tffn + C41 + C 4 2 AY + C4 3 AZ + C 4 4 At

where

AX = X - XN

Y = Y " YN

AZ = Z- Z N

At = t - tN

-17-



XN' YN' ZN' tN = nominal position and time at first burnout

X, Y, Z, t = actual position and time at first burnout

XTN' YTN = nominal velocity components at the target

tff = nominal time of free flight

When the above method is used the guidance computer (except the

clock) as well as the accelerometer and accelerometer electronics may be

shut off. This results in a saving of power, and therefore weight.

-18-
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V. THE REQUIRED VELOCITY VECTOR

A ballistic missile engine whose thrust may be controlled in magnitude

as well as direction is said to have thrust magnitude control. Ballistic

missiles with this feature can be made to fly the nominal desired time-

specified trajectory. That is, such missiles could be controlled to burn-

out at a prespecified position, velocity, and time.

It will be assumed in this memo that the ballistic missile engines used

do not have thrust magnitude control. However, it will be assumed that

the thrust and mass magnitudes are reproducible within a few percent.

These ballistic missiles can then be steered only by pitching and yawing

the thrust vector. With this type of control it is possible to steer the

missile velocity vector to the value specified by some function of missile

position, R, and time, t. This desired velocity function will be termed

the required velocity vector, VR = VR (R, t). This vector function is

obtained on the limiting assumption that an impulsive thrust engine is

used. That is, at any time during the powered flight, it is assumed that

a velocity increment, AV, may be added such that

R +AV = V R

This is referred to as a limiting assumption because additional guidance

constraints may be imposed when the actual finite thrusting capabilities

of the missile are used in the analysis.

The limiting assumption will be made in the analysis that follows,

Then the specification of four general guidance constraints is necessary

in order to uniquely determine VR (R, t). A consideration of Figure 5. 1

will help to clarify this matter.

-19-
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- -- t ffA Trajectory A

U.. - /

R .- - tffA Trajectory B
/~ ~~ A ---. --- /

1 / / fA N O.k k

A R B  .X Desired Target,

B

Figure 5. 1 - Three Coast Trajectories, All Hitting

the Desired Target

The three free-flight trajectories shown in Figure 5. 1 all "hit" the de-

sired target. That is, after a period of time, tff, each of the three

trajectories satisfies the three guidance constraints that

X = XT

Y = YT

Z = ZT

Consider the two trajectories originating at point A. In order to specify

the required velocity vector at point A, an additional guidance constraint

I" 0 -



must be imposed. For example, it may be required to hold the time of

free flight to a constant value, as is done in trajectories A and B.

Equally well, any one of the following restraints could be prespecified:

a) Burnout velocity magnitude

b) Burnout vertical velocity

c) Burnout velocity vector elevation angle

d) Burnout energy

e) Burnout angular momentum magnitude

f) Velocity magnitude at the target

g) Vertical velocity at the target

h) Total time of flight from liftoff to the target

In addition to the above, many more restraints which are desirable

could be listed.

It is not necessary to include hitting the target as three restraints.

A required velocity vector field, VR (R,t), can be foundthat will cause

the free-flight velocity vector to satisfy the following four conditions:

1) X =XT

Z)' Z = ZT

3) = YT

4) Constant total time of flight from liftoff

The tff, XTP 'T' and YT will all vary in the preceding example

depending on the burnout time and position vector. Another interesting

example will be included. It is possible to steer the missile so that the

velocity vector at burnout has some desired value. In this case the four

guidance restraints are the following:

-21-
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1) X =XT

2) Y T

3) Z:ZT

4) tff = 0

In this example the burnout position and time will vary depending on the

off nominal performance of the propulsion system, etc. The above ex-

amples serve to illustrate that all essential guidance information is

included in the specification of the required velocity vector, V . This
R

follows from the fact that all missiles can be controlled (theoretically)

such that they will have exactly the required velocity vector at burnout.

They will therefore satisfy the prescribed guidance restraints. Any two

missiles that burn out at the same vector position and time will have

identical free-flight trajectories. Note that the missile must be steered
-A -

in pitch in order to achieve V R = V R (, t).

The required velocity vector is sometimes discussed with a meaning

different from that described above. For example, the four guidance

restraints may be the following:

1,2,3) R = RT

4) Arbitrary vertical velocity, Z, at burnout.

Note that the fourth restraint, above, is quite different from condition

b) previously discussed, where it was required that the burnout vertical

velocity be steered to a prespecified constant. Condition 4) is used

whenever it is required to pitch the missile according to some preassigned

pitch program. In this case the missile vertical velocity, Z, will vary

according to missile performance. The variation in Z may be indicated

by writing the guidance control function as:
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V = VR (R, Z, t) where Z is arbitrary.

Using VR in this form leads to satisfactory performance for missiles

that are designed to impact on the earth. Note that only three guidance

restraints may now be imposed. That is, at R = RT along the coast

trajectory, the coast time of free flight will necessarily vary with

missile performance. This memo will not further discuss guidance

systems using VR = VR (R, Z, t), Only guidance systems using VR
= VR (R, t), which require pitch steering, will be discussed.

Some simple examples dealing with required velocity vector calcula-

tion will now be given. The calculation of VR involves only the free-

flight equations of motion. On a flat earth these may be written as

R - g (5.1)

where g is a constanL The solution is

R =R + R 5t + 5 2)

In equation (5. 2), R and R denote the burnout conditions. It is now0 0

required to find the burnout velocity that will cause the missile to coast

to the target, RT (t), after a time of free flight, t ff Since it is assumed

that the missile can burn out at any position, R, equation (5, 2) can be

written as

RT(t) = R + VR tff f T g tff (5.2A)

The target position is written as RT (t) to indicate that the position of

the desired target may vary with time, The solution for VR on the flat

earth is then

R- -T (~t) - R _ I a
VR (R , t ) - -f g tff (5, 2B)
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If the tff is now chosen as the fourth guidance restraint, then this pre-

specified value (a constant) may be substituted in equation (5.2B) resulting

in the desired expression for V If the fourth guidance restraint is that

the total time of flight should be a prespecified constant, T, then

tff = T - t should be substituted into equation (5.ZB).

It may be required that the vertical velocity of the missile at the

target be some prespecified value, Z"T" Then, when gx = g = 0,

ZT = VRz +gtff g-32 ft (5.3)
sec

2

When VRz is eliminated froni equation (5. 3) and the Z-component of
equation (5. ZB), an expression for time of free flight is obtained as

z z422ZT -Z)
t ff g (5.4)

The desired expression for required velocity is now obtained by substituting

tff from equation (5.4) into (5. 2B).

In realistic cases VR must be obtained for oblate spheroids. This
solution can be obtained with sufficient accuracy by analytical methods.

However, these solutions will involve square roots and divisions which

are difficult operations for many IGS computers. Experience indicates

that a loss in accuracy results when these analytical solutions are expanded

in power series expansions. Hence, curve fitting techniques (least squares)

are employed using high-speed digital computers. It is desired to find

VR (R, t) in the following form:

VR a 00 + a0 A X + a 20AY + a30AZ
x

+ a4 0 At + a1 1 AX 2 + a 1 2 AX AY

+ ... + a4 4 At 2  (5.5)
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Similar expansions are obtained for V and VRz There are 15 terms

in each expansion. In equation (5. 5),

AX =X - XN

AY = y. Y N

AZ = Z - ZN

At t - tN

XNo YN' ZN tN = nominal (standard) burnout position and time

a.. = guidance constants, to be determined1J

The a.. in equation (5. 5) are analogous to partial derivatives, as
13

ex
a 1= YX ) Burnout

a12 -X 8DY Burnout

except that these "partial derivatives" are obtained by least squares

techniques. Note that a 0 0 in equation (5.5) is the nominal

value of the X-component of the burnout velocity vector or

a00 = RxN

*No third-order terms are given in equation (5. 5). In general, the

listed terms have been found to result in negligible fitting errors over

the expected burnout dispersion box.

The burnout dispersion box is defined by the expected variations in

AX, AY, AZ, and At at burnout. These variations result from varia-

tions in the thrust, specific impulse, initial mass, etc.
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(R, t)-

Nominal Coast %%%

VRN Trajectory

Burnout Dispersion Box

RT

Figure 5. Z - Nominal and Nonstandard Required
Velocity Vectors at Burnout.

The dispersion box is shown in Figure 5.Z along with nominal and

nonstandard required velocity vectors at burnout. The size of the

burnout dispersion box depends principally on the propulsion and control

system tolerances. The shape depends on the guidance restraints chosen

and the type of missile steering employed by the IGS.

In order to determine the a.. in equation (5.5) by least squares pro-iJ

cedures, it is necessary to have input data. To obtain these data, it is

first necessary to estimate the size and shape of the dispersion box.

When this has been done a large number of points may be designated with-

in the dispersion box either at random or by some systematic procedure.

Any one of many iterative techniques may now be used to determine the

required velocity vectors at the designated points. With some techniques,

as many as 15 machine runs may be required to determine VR at one

-26.
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point. By definition, the resulting vector field, VR (R, t) must satisfy

the four chosen guidance constraints. This vector field is then the input

data to the least squares routine.

A second method for obtaining these data has been used with success

at STL. This method has the advantage that iterative techniques are not

required. 'Assume that the four guidance restraints are

1, 2,3)R = T

4)k XT

Then YT and Z T (as well as the tff) will vary. The free flight may

be started at the target position with X = X Runs may now be made,

integrating backwards. These runs require that YT and Z"T be

varied in amounts depending on the size of the expected dispersion box.

When.the missile has coasted (backwards) for the nominal time of free

flight, the quantities R, R, and tffN are recorded. These data are also

recorded, along the same free-flight trajectory at the times

t = tffN-nAt (n = 1,2 ... , N)

where At is also dependent on the size of the dispersion box. If N = 3,

then seven sets of data, i. e. , seven required velocity vectors, are obtained

for each run. Then from the nominal and two variations on Y T and 7Ty

35 sets of data will be obtained, which may be input into the least squares

routine. Note that it is desirable to define all guidance restraints at the

target, when using this method. If the velocity magnitude at the target

were constrained, then XT could be solved for and the above discussion

applies. If the total time of flight, T, were constrained (as condition 4)

it would be necessary to vary AXTP as well as AYT and AZ T The

quantity Atff, appearing in the expansion would then be eliminated using

T -t = tff
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or - At = Atff = tff - t ff1

where At = t - tN

Methods for steering the missile such that R will be controlled to

be equal to VR (R, t) will be presented in the next section. Note that

such control is equivalent to controlling V (R, R, t) to zero,
g

where

V = V R -R (5.6)g R

The quantity V is used as the basic guidance control function in theg
MIT guidance system.
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VI. BALLISTIC MISSILE STEERING METHODS

A ballistic missile is steered by controlling the direction of the

thrust vector. For flight through the atmosphere, the missile must be

steered so that a gravity turn is approximated. A gravity turn results

when the missile angle of attack, and hence aerodynamic forces normal

to the missile axis, vanish. This requirement is made because normal

forces of this nature set up bending moments along the missile axis that

could cause the missile to break. It is shown in Appendix B'that a

gravity turn will result when is chosen as

- EAR+W

where R is the missile inertial velocity, wE is the earth angular

velocity, and W is the wind velocity. The wind velocity is usually

neglected.

It will be assumed in this section that the commanded attitude turning

rates required for the gravity turn are obtained from a simulation incor-

porating the above equation. The required turning rates may then be

printed out and stored in a missile programmer. Alternate methods for

accomplishing the gravity turn have been studied. For example, the

required attitude may be expressed 6C an empirical function of actual

missile position and velocity. This procedure minimizes the dispersions

that result when closed-loop guidance steering is initiated.

The remaining paragraphs in this section will assume that the gravity

turn has been completed and that the missile is out of the atmosphere.

Hence, no aerodynamic forces will be considered to act on the missile.

Ballistic missiles generally have long, slender configurations with the

thrust chamber gimbal located many feet away from the center of gravity

(C. G. ). Since the consideration oi' missile control systems would tend to

mask the guidance problem, the following discussion will be limited to

point mass missiles. Such missiles are approximated by cylindrical

NThe symbol denotes parallelism.
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1
shapes with the thrust chamber gimbal located at the C.G. The direction

of the thrust attitude vector will be denoted by in this section. The

IGS is also assumed to be located at the C. G. The purpose of the

IGS is to determine a commanded value of the thrust attitude vector,
.cv such that the missile velocity will be controlled to the required

velocity vector.

Steering methods will be developed in this section for point mass

missiles. These methods will be extended in Section VII to actual missiles,

where the differential equations relating and c will be obtained.

It is sufficient for the present purpose to note that will lag c as a

result of control system reaction time, engine gimbal inertia, and any

limiting that might be present. It is assumed here that the control sys-

tem response is rapid and that these lags may be neglected. However,

thrust misalignments are considered to exist, and integral control terms

are added to reduce their effect. Hence, and c will be treated as

identical quantities in this section.

The problem of steering the missile may be approached in many

ways. The solution to this problem is not unique. The methods pre-

sented in this section have been found to be satisfactory, but no claim is

made that these methods are optimum. A short discussion of the nominal

trajectory follows.

Trajectories for nominal missiles are usually generated by choosing

a thrust attitude, aN(t), such that

a) R -VR (R, t)

b) Minimum propellant is wasted

c) Heating constraints, etc., are satisfied

d) Gravity turn is flown through the atmosphere

It may require many runs on a large digital computer of the powered-

flight simulation to determine gN(t) subject to the listed restraints.
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The nominal thrust attitude in determined from liftoff in the powered-

flight simulation. Note that N will change in direction except for verti-

cal flight. It is customary to define a constant vector such that

tN (t) ' = 0

The plane defined by PN is said to be the pitch plane.

Since guided flight in a vacuum will be assumed, only two accelera-

tions will act on the point mass missile. The sum of the linear accelera-

tions

R g+a T

= g+ aT (6.1)

where R = resultant inertial acceleration of the missile C.G.

aT magnitude of thrust aoceleration (= thrust per unit

masS)

Sunit vector in'the direction of the thrust vector

_'U - --
The ballistic missile must be steered such that R - V R (R, t) at burn-

out for nominal as well as nonstandard missiles. The velocity to be
- % ." -- I tk

gained, V = V (R, R, t) is defined asg g

Vg =V R (R,t) - R (6.2)

Hence, a commanded thrust attitude vector, c (t), must be found such

that all three components of V vanish at burnout. At the precise. time
- g

when V = 0 the missile engine will be cut off. The missile will then -g
coast to its target satisfying the four guidance restraints.

It is convenient to choose the computing coordinate system set of

basis vectors as follows:

i = parallel to the nominal thrust attitude vector at

burnout
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= PN' i. e., normal to the pitch plane

k = i'j

The origin of the inertial coordinate system may be chosen at the center

of the earth or at the launch site. The velocity of the missile will be
-4 = ..." , .=-1 0 -6

R = X i+Y j + Z k

Pitch commands may then be based on Zg, yaw commands may be based

on Y g, and engine cutoff commands based on X . These components
-gare defined by equation (6.2), and VR is obtained by explicit computation

or by using one of the methods given in Section V. It will be assumed

that the change in thrust attitude is sufficiently small that cross-coupling

between Xg Yg, and Zg may be neglected.
gA

When the thrust attitude, t, is specified, the motion of the missile
C.G. is obtained by integrating equation (6. 1). Since is a unit vector

the specification could be given in terms of the pitch and yaw components,

9z and g . The specification could also be given in terms of the pitch

and yaw attitude rates, iz and y. It is assumed that the commanded
roll attitude rate is zero. The following paragraphs will discuss the

determination of the pitch attitude. A corresponding discussion (not

presented) will be obvious for the yaw channel.

The pitch attitude of the thrust vector, 9., must be determined

such that V - 0. This result would be obtained if V were a solutiongz gz
of any one of the following six forms:

2) VZ + KV = 0

gz gz2) V gz + KV gz  0
• . / t

3)* -Z +KVg z +Lf Vg z = 0

to

St
It is understood throughout that Vgz j- Vgz (-r) d'r.
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4 ) Vgz + KVgz + Lj Vg z =0 (6.4)
to

5) -Z + KV + LV =0gz gz

6)Vg + KV + LVg = 0

where Vg z = V - Z. Many other forms, including cross-coupled forms,

could be added to the above list, but the above six will suffice for the pre-

sent discussion. The gain functions K and L are chosen to insure

stability and satisfactory transient response. The presence of the V
gz

term in all six forms assures that V will be controlled to zero.
gz

Forms (1) and (2) are the simplest, form (2) being preferred because

1 will also vanish at burnout. In practice, it is found that the presencegz
of thrust misalignments, lags in the control system, etc., result in

steering errors. These errors may be significantly reduced by intro-

ducing integral control terms as in forms (3) and (4). In these forms,

to designates the time at which guidance is initiated. Forms (5) and t6)

are equivalent to forms (3) and (4) and are used when the thrust attitude

rate is to be commanded.

When form (4) is"used, gz is obtained by eliminating Z using

equation (6. 1) as

Z =gz + aT z (6.5)

Then

aTtz = KVgz + Lf Vgz + VRz - gz (6.6)

Equation (6.6) may be simplified when VR (R. t) is chosen from a

restricted class of vector functions. The restriction requires that when-

ever the missile engine is shut off, with V = 0, that V will continueg g
to vanishduring the coast period that precedes arrival at the target.
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Guidance constraints of the type a) - c) on Page 21 will not result

in expressions for VR (R, t) that satisfy the class restriction. Con-

straints d) - h) will satisfy the restriction. In general, the class restric-

tion is not a serious limitation. For example, whenever the four guidance

restraints are defined at the target, the restriction will be satisfied. The

remaining analysis in this report will assume that VR satisfies the class

restriction.

When the guidance restraints are chosen such that VR (R, t) satisfies

the class restriction, it follows that

g = v R ( R , t ) VR = R (6.7)

The following expansion in partial derivatives is valid in general

3 aVR . aVR
VR Z -- R + (6.8)

where

R 1 -X, R 2 = Y, and R = Z

When VR satisfies the class restriction, equations (6, 7) may be substi-

tuted into (6. 8) to obtain

whr 8Z~VR  8VR
x&R V + 8 R6.8A)

CL=I
wher e

V RI =Vixk V RZ = V Ry, and V R3 = VRz
,.J

Elimination of E from equations (6. 8A) and (6. 8) gives

3
V -g = - V (6.9)

CL=l X gc
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Using equation (6. 9), equation (6.6) may be written as

a~Z=KVZ+ Lf Vg - Z R z V (6.10)T z =Kg z  ft o gz 8X ga

Note that equation (6. 10) could be simplified if equation (6.4), form (4),

had been written as

'- ft 8Rz

gz + KV + L Vgz- O V 0 (6.11)
to a=I

This simplification will not be made in this section because of the com-

plex character of equation (6.11). However, it is felt that constants K

and L for the pitch (and yaw) channels may be found that will cause

V -o 0 and V -* 0. Then the V terms in equation (6. 10) will notgz gy g

be required.

When a missile is steered according to equation (6., 10) an excessive

use of propellant may be experienced, since the nominal trajectory will

not be reproduced. The nominal pitch thrust attitude is obtained as

N -~ --- N

6Nz N k

If tz were evaluated along the nominal trajectory, it would generally be

found that

z Nz

By construction of N it follows that any such deviations can only result

in the failure of equation (6. 10) to satisfy the nominal trajectory shaping

restraints, with the exception of the first (R-. VR). This defect in equa-

tion (6. 10) can be remedied in two ways, both essentially equivalent. A

discussion of this procedure follows.
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The reason why equation (6. 10) causes the nominal missile to be

steered (in pitch) is that equations (6.4) are not satisfied by the nominal

missile. Equations (6.4), however, can be easily generalized so that

they are satisfied by the nominal missile. This is done by adding a

forcing function, F (V ), to the right-hand sides. The forcing function
gx

is obtained by evaluating the left-hand side of equation (6. 4), form (4),

over the nomina[ trajectory, to obtain FN asz

NF N  V + K V + L V (6. 12)z : gNgzN gzN

The nominal value of the X-component of the velocity to be gained, V gxN'

is also obtained. Then F N is expressed as a function of VgxN. The

quantity VgxN is chosen as the independent variable for the F-function

because Vg x will tend to zero in a smooth fashion as the missile gains

velocity. At burnout V = 0; hence, V - 0 as required. In order togx N. gz

retain computer simplicity, F N is chosen in the formZ

FN - + 2 (.3z= 1 gxN 2 gxN(6.13)

where C 1 and C2 are trajectory shaping constants. These constants

should .be obtained such that a good fit to the nominal trajectory is obtained

in the burnout region. The curve fit should also include the guidance

initiation point in order to minimize pitch commands when the guidance

loop is closed.

Although quadratic terms are indicated in equation (6. 13), in some

cases linear terms will suffice; in others cubic terms will be called for.

This choice depends on the precision required in duplicating the nominal

trajectory. Only a small amount of propellant waste is allowed for

missions requiring maximum burnout energy. In such missions every

additional. X pounds of propellant required represents the loss of an

additional physical experiment.
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The forcing function, F (Vg), to be added to the right-hand side of
z gx

equation (6.4), form (4) is then

F VCv + (6•.14)
Fz (Vgz) =C1 Vgx +C 2 Vgx

where C1 and C2 are the same constants used in equation (6. 13).

Equation (6. 4), form (4), is then modified as

gz+L 0  g zVgx)

gz + KVg z + L Vg z = Fz (V ) (6.15)

Equation (6. 15) is now satisfied by the nominal missile, and V -- 0 asgz

required. The yaw and pitch attitudes to be commanded, ty and tzf

may now be obtained following the procedure indicated by equationi (6. 5)

to (6. 10). The result is

aTy KV +Lft -zt V -F (V)
T +Y g gyLa8X ga y gx

(6. 15A)*3 
a

aTtz = KVgz + L VgzZ 8X ga -F z(V )

where it is assumed that the pitch and yaw channels are identical; hence,

the same gains K and L.

A second procedure will now be mentioned for shaping equations

(6.4) so that these equations are satisfied by the nominal missile. Again

let equation (6.4), form (4), be used as the example.

Note that equations (6. 6), (6. 10), (6015A), and (6. 18) can be simplified
if the computing coordinate system is chosen such that

R ^ 0

-37-



,1I

The desired forcing function is

FN' + K V + t
F + LftV

z gzN gzN j gzN
to

Hence, form (4) could be written as

.. * t *
V + KV + L V -0 (6.16)gz gz J gz

to

where

Vgz = Vgz VgzN (6.17)

The quantity VgzN may now be expressed in powers of VgxN as was-

done in equation (6. 13) for F z. Note that this method requires that

fitting errors in the integral and the derivative of V also be mini-
gzN

mized. When this technique is used the expressions for y and

are obtained as

aT~y= aT yn + K Vg + L ftV g 8 V)
n gy J to gy a  ga

rt3 (618

+ tt V* I*Rz *aTtz =aTn tzn + K Vgz + to gz" I e Vaga

where- V = Vgx and V = V are defined as in equation (6. 17).
That is

V g - vg N  (6.19)

Since V 0 at burnout, it follows that the variation between a andg

a TN may be neglected. Then equations (6.18) become
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I
y eyN*aT gy ;T to gy OXc ga

(6.20)
9z :-N + E v +'f V - V

aT8X a  ga

Equations (6. 20) completely determine c since it is only necessary to

specify two components of a unit vector, because equations (6. 20) could

also be written as

+1 K * + L 1 V V yV
N Na gy a E ag

T TN+  fY gY .aT Ox g

to 1

t3 OV (6. ZOA)e~e +- v'i fv* __ v*

aT gy Y7 i gy aT I ax" ga

where - and e - eN denote small variations in the pitch and yaw

attitude angles about the nominal values.

Equations (6.15A)and (6.20) may now be used to steer the ballistic

missile. The quantity V will furnish the engine shutoff command.gx
That is, when V = E a command will be issued to shut off the main

gxengine. The parameter E is in'cluded to allow for the expected residual

impulse of the main engine, as well as the impulse of a vernier engine,

if provided. The vernier engine will be shut off when V = 0.
gx

Since V g 0, equations (6. 20) can be written in vector form asgx

+ V + V 'R V(6.21)aT  g 7T  g aT  aX ga
to1

where the gain constants K and L are also indicated for the roll

channel. This is done simply for mathematical convenience and is accept-

able since it is not planned to steer in roll. The symbol " is used in
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equation (6. 21) to denote parallelism. The X axis was chosen along

6N at burnout. Hence, if tN is a constant vector, it follows that equa-

tion (6.2 1) is normalized except for second-order terms, When gN is

not a constant vector, it is desirable to- define the quantities V such

that

V N = (6. 2)

= N A gN

By construction, y is the sum of the two components of V normal toBy con g
the thrust attitude vector 6N* The component of V parallel to tN

will be denoted by e, hence

e = Vg • 'N (6.23)

Then V N +g

Both V and V vanish along the nominal trajectory and are identical_ g g

if tN is a constant. Hence, equations (6. 21) may be written as

g N + K + a T3 - 4X

aT Lr t ~ ~ l V~8 R~ (6.2Z4)
to T

Equation (6. 24) may also ke used for missile steering. The main

engine cutoff signal is e, defined by equation (6. 23). The advantage of

this representation is that it is independent of a particular coordinate

system and is free of cross-coupling errors.

The thrust attitude rate, , may be commanded in place of t. This

expression may be derived by writing equation (6.4), form (6), as

Vg +KVg + LVg = q (e) (6.25),
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The inhomogeneous term q- (s) is added so that equation (6. 25) will be

satisfied by the nominal trajectory. That is

q(sN) = VgN+ K NN (6.26)

where e denotes the engine cutoff signal. Equations (6. 1) and (6.2)
may be differentiated with the result

R g g+aT + aT

V = V R

Using the above results, equation (6. 25) becomes

a +a- 9 +K V -+ (L) (6. V)

The quantity aT may be absorbed in (e). Then equation (6.27) will
specify a commanded turning rate that will cause V - 0. Since,

g

equation (6. 27) may be written as

a 4+ ('T +KaT) = LVg +K (VR - g) + (VR - g) q (e) (6.28)

The result of multiplication by (vector cross product) is

aT W L AVg + A R - +

(6.29)

"RA (e)

where - is the commanded angular velocity of the thrust attitude vector

defined as

W A ̂(6.30)
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The steering equation (6. 29) is one form of the so-called cross-product

steering. This equation may be simplified using equations (6. 9) and

choosing the coordinate system suggested in the footnote on Page 37.

Other simplifications will result when suitable cross-coupled terms are

added to equation (6.4), form (6) as discussed in connection with equation

(6. 11). A stability analysis should then be done on the resulting form.

Finally the steering equations should be simulated using a closed-loop

guidance simulation. This last step is necessary to verify that only

negligible errors (V 9 0 at burnout) result when nonstandard missiles

are steered.
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I
VII. BALLISTIC MISSILE CONTROL SYSTEMS

The preceding discussion was restricted to point mass missiles,

where the thrust chamber was located at the C. G. Since this is not the

case for long slender ballistic missiles, it is necessary to consider

actual missile dynamics. Only rigid-body missile dynamics will be con-

sidered in this section. Aerodynamic forces will not be treated since it

is assumed that the missile is above the atmosphere. The forces acting

on the missile are shown in Figure 7. 1. In Figure 7. 1 the thrust attitude

unit vector is denoted by the symbol 6. In the preceding section the

thrust attitude was denoted by t. This symbol will now be used to

denote the missile attitude unit vector. When this change in notation is

made, the linear acceleration equation becomes:

R = g + aT6 (7,1)

Two additional unit vectors are defined by the engine missile gimbal

geometry. Pitch rotations of the missile occur about ; yaw rotations

about '.

The relation between missile attitude, , and thrust attitude will

now be found. This determination requires application of the turning

moment equation. The moment equation for missiles is

: W= I (7.Z)

where 7 = torque about the missile C. G.

I = I (t) is the missile pitch or yaw moment

of inertia about the C. G.

-Al

Equation (7. Z) neglects propellant sloshing effects; it is assumed that all

internal linear momenta are directed along the missile axis. In order for

equation (7. 2) to have the given simple form, the roll angular velocity

must vanish. Then the roll moment of inertia is not involved. The torque
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Figure 7. 1 -Force. Acting on the Ballistic Missile During
Powered Flight in a Vacuum.
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about the missile C. G. is

= T (Ie) = T6 (7.'3

Hence,

iL c 6A'te =L (7.4)

where

TI
Ic - (7.5)

Equation (7.4) is usually presented in component form. The pitch compo-

nent is obtained by multiplying (scalar product) equation (7.4) by . to

obtain

S c 6 o 0 
'  "0

where

0 = pitch angle between 6 and 6 t - )
o = magnitude of pitch angular acceleration .

The symbol ^ is used above to indicate that small angle approximations

have been made.

The purpose of the missile control system is to steer the thrust

vector, T, such that the missile will assume a reference attitude,

The reference attitude is chosen to coincide with the desired thrust attitude

determined in the preceding section. The missile moment equation (7.4)

indicates the validity of this identification. When e # 6, the missile must

experience an angular acceleration, w. The assumption that W' is negli-

gible is acceptable when guidance steering commands only are considered.

That is, C is large as a result of control system commands rather than

guidance system commands. When w = 0, equation (7.1) reduces to

R- = + a T
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This is precisely the same equation that was discussed in Section VI.

Expressions for the reference attitude were given in equations (6. 15),

(6. 18), (6.20), (6.21),and (6.24). The latter is

t 8V=  +  - -L - I -- -
aT g aT .j gato T X

The commanded thrust attitude, 6 c, must now be determined to insure

that the missile attitude will be controlled to

The commanded pitch or yaw thrust attitude is usually presented in

component form, the pitch component (typical) is

= KD R -)- K.R (7.7)

where

6 = pitch component of commandedOC :.. 1 , 1thrust attitude (' 6.

K K -c

KD' KR = control system constants

_.I I_ k - _..
eR - e = pitch angle between and ( R

6 = magnitude of the pitch angular velocity (:. c.

In equation (7. 7) the quantity Q is usually measured by a rate gyro pack-

age located at some point in the missile structure that is relatively free

of bending frequencies.

The control system equations may be specified in a form that is in-

dependent of any particular coordinate system. Equation (7. 7) is readily

-46 -,

I



generalized to the vector form. The result is

8cA K KD A 6 R " K'R (7.8)

Equation (7.8) defines both pitch and yaw engine deflection commands.

The same constants KD and KR are used for both pitch and yaw since

these channels are assumed to be identical. In this section, as in the

preceding section, the lag in the engine hydraulic system will be neglected.

Hence, the quantities 6 = -6 c will be considered to be identical.
cc

When 6 = 6 is eliminated from equations (7. 8) and (7.4) the result is

C + 4 cKRw " cKDg A tR 0 (7.9)

The pitch component of equation (7. 9) is obtained by multiplying (scalar

product) equation (7.9) by , The result is

,00 + cKR 0 + ItcKD (e -R) 0 ,R 0 (7.10)

Equation (7. 10) is usually obtained by eliminating 6= oc between

equations (7. 7) and (7. 6). A consideration of equation (7. 10) serves to

justify the form chosen for 6 C in equations (7. 7) or (7. 8). The control

syStem constants KD and K R must be chosen such that a stable system

with satisfactory transient response is obtained. In practice, missile

bending.and propellant sloshing must be considered so that a simulation is

required for this gain determination. Values of KD and KR may gener-

ally be found such that R with small lag.

If' some additional computer complexity is allowed, then R" can be

calculated as in equation (6.27). The pitch component (typical) of 6
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I
could then be written in the form:

6oc = KD(0 R - e)+ KR(OR ( ; )

Equations of this type would control to as well as g to 9RI a

desirable feature when the nominal missile is pitched over at a high rate.

Some additional relations, useful in guidance and control systems

analysis, will now be given. Since - A , equation (7.8) may be

written as:

6 A =KD A9 .KR 9AC (7.11)

Equation (7.11) will now be assumed to define 6 , hence,.the omission of

the $ symbol. An equivalent form of equation (7. 11) is

..A [6 KDR K = 0 (7.2)

The quantity in the square parenthesis must be parallel to 6, hence,

-A ~ % . -.

At= 6 +KDtR - KR9 (7.13)

The normalization constant, A, may be determined by multiplying (scalar

product) both sides of equation (7. 9) by . Then

A = 6 . 9 +KD9 R * t (7.14)

The result of substituting A into equation (7. 13) is

-Nt = ." -- ---% •:

When the small angle approximation is made, equation (7. 15) becomes

6c A - KD R - + KRt (7.16)
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Equation (7.16) gives a simple relation between 6C and R that

does not depend on any particular inertial coordinate system.

A vector relation may also be found relating 6 and . Equation

(7.4) is

c6At = d (tAt) (7.17)'

Since tA - 0 , the moment equation reduces to

gA[ L + J =0 (7.18)

It may be shown that

+ (7.19)

where w and w are the magnitudes of W and tu. With-this substitution,

equation (7. 18) becomes

A[Ic 6+ = 0 (7.20)

An expression for 6 may be obtained from equation (7. 20) using the
method of the preceding paragraph. The result is

c €
(7.21)

-49-



Since and_ are unit vectors, it follows that

cos 6 -6

sin 6, = ;7 (7.22)
c

where 6 is the angle (combined pitch and yaw) between and t. When

the small angle approximation is made, equation (7. 21) becomes

c % (7.23)

The above discussion presented the basic equations of a missile

control system necessary for guidance system analysis. The discussion

assumed that the missile attitude was to be controlled to the guidance

reference attitude t . Only simple modifications are required to adapt
R * simple--

the analysis to the case when t is to be controlled to R or w to OR

A small complication could be added to the above analysis by includ-

ing the effect of the engine gimbal inertia. The relationship between 6

and 6 is used in this section as 6 = 6 . A better approximation forc c

this relation is

t -kT6  (t - T) dT

60 (t) = oc 1 (7.24)

for the pitch (typical) component. In equation (7. 24) the parameter k is

related to the lag in the engine hydraulic system.
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APPENDIX A

Derivation of the Force Equation for Ballistic Missiles

A short nonrigorous derivation of the linear force equation is given

in this appendix. The sum of the external forces acting on a system of

particles equals the rate of change of linear momentum of the system or

ZF =(m + mg) (AV )

where

m = mass of the missile

v = velocity of the missile

m = mass of the escaping gasg

v = velocity of the escaping gasg

and the dot is used to denote differentiation with respect to time. It is

assumed in this appendix that the only external force on the missile arises

from gravitational acceleration; hence, equation (A- 1) may be written as

mg = mv+mv+mv +m v (A-Z)g gg

Now v = 0 when the gas exits into free space, and m =-m since the
g g

total system mass is a constant. Thus

- k -. L - -- 1

mg = m v+ m (v 9 v)

= mv+m C (A-3)

= rnv -T
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where

C = escape gas velocity with respect to the missile

(also called specific impulse)

T = - m C = missile thrust vector.g

Equation (A-3) may be divided by m, with the result

21 -1 -

R. = v-= g + a T. (B-4)

where

- T
a-T m 3

-53-



APPENDIX B

The Gravity Turn Pitch Program

The missile is steered through the atmosphere such that a "gravity

turn" is followed. This pitch profile is alternately referred to as either

a zero-lift or a zero angle-of-attack pitch program. This program is
utilized in order to prevent breakage of the missile as a result of aero-

dynamic forces.

The aerodynamic forces are referred to as drag, D, and lift, L.

The drag force is directed along the roll axis while the lift force acts

normal to the missile axis. The forces acting on the missile, for flight
through the atmosphere, are shown in Figure B-1, The point of applica-

tion of the resultant aerodynamic force is referred to as the center of

pressure (C.P.). The forces, L and D, acting at the C.P. are defined

as:

/ . - -  ^

d 1

V- Thrust direction.

Figure B-I - Forces Acting on the Missile for
Flight Through the Atmosphere
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.1

D= -D (B-i1)
-A (B-2)L LA(VAA ) (

A

whe re:

D =CDAq

L GN (a) A q

direction of missile roll axis, a unit vector

VA velocity of the missile with respect
to the air mass

VA = magnitude of VA

A = effective missile area

2
q = 1/2 p VA = dynamic pressure

p air density

CD d rag coefficient

CN (a) = lift coefficient

i angle of attack (V A cos a = VA ')

The drag and lift forces are sometimes defined as acting along and

normal to VA' rather than 6 When actual data are used, care must be

taken to insure that the definitions are consistent with the data.

The axial strength of the missile is greater than the transverse

strength. Hence, the normal forces (lift) must be minimized for flight

through the atmosphere. Otherwise the aerodynamic lift forces would

produce bending moments that could break the long, slender missile.
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Note also that when L j 0, it is necessar.y to choose the engine thrust

direction, 6, to prevent the missile from rotating. The aerodynamic

pitching moment is cancelled by choosing

Ld 6/\ A) I T

where

d = distance between the C. G. and the C. P.

I = distance between the C. G. and the engine gimbal

T = engine thrust

When a zero-lift pitch program is not followed the energy required to

cancel the pitching moment is wasted. Some of this wasted energy is

converted to heat energy resulting in weakening of the missile structure.

Note that L can be made to vanish by choosing

V A (B-3)
VA

The quantity VA is calculated as

VA -R wE A R + V (B-4)

where

R = velocity of the missile with respect to
inertial space

R = position vector of the missile with respect to the earth

= angular velocity of the earth

W = wind velocity with respect to the earth,
normally a negligible quantity
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The missile will fly a gravity turn when equation (B-3) is satisfied.

All the quantities required to determine the direction of VA are calculated

in standard missile simulations. Then the thrust attitude, 6, may be

commanded, as

6=
V A

When aunity control system (equivalent to a point mass missile) is
-A 

- "assumed, it follows that 6 -

The simulation will calculate the missile angular velocity,,

= A . This quantity may be approximated with simple functions

and incorporated in a missile pitch programmer. Steering commands

from the missile programmer then cause the missile to pitch over to

approximate the desired gravity turn.

Note that when W 0, the initial value of = is arbitrary.
. b -- %

When the initial value, toi is chosen the resulting gravity turn is

specified. In general it is necessary to make several flights, using

different values for t o , in order to obtain the desired end conditions.

These variations can be made even when W € 0, since wind velocities

are normally small enough to be neglected.
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